References

- Harel, M. & HIRSHFELD, F. L. (1975). Acta Cryst. B31, 162-172.
- HIRSHFELD, F. L. (1971). Acta Cryst. B27, 769-781.
- HIRSHFELD, F. L. (1976). Acta Cryst. A32, 239-244.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
- KIRFEL, A., GUPTA, A. & WILL, G. (1979a). Acta Cryst. B35, 1052–1059.
- KIRFEL, A., GUPTA, A. & WILL, G. (1979b). Acta Cryst. B35, 2291-2300.
- KIRFEL, A. & WILL, G. (1980). Acta Cryst. B36, 512-523.
- LONGUET-HIGGINS, H. C. & ROBERTS, M. DE V. (1955). Proc. R. Soc. London Ser. A, 230, 110–119.
- REES, B. (1976). Acta Cryst. A 32, 483-488.
- REES, B. (1978). Acta Cryst. A 34, 254-256.
- WILL, G., KIRFEL, A. & GUPTA, A. (1979). J. Less-Common Met. 67, 13-18.

Acta Cryst. (1980). B36, 1319–1322

Structure de Tl₂Mo₉S₁₁: Clusters Mo₁₂ et Mo₆ Isolés

PAR MICHEL POTEL, ROGER CHEVREL ET MARCEL SERGENT

Laboratoire de Chimie Minérale B, Laboratoire associé au CNRS 254, Université de Rennes, Campus de Beaulieu, avenue du Général Leclerc, 35042 Rennes CEDEX, France

(Reçu le 12 septembre 1979, accepté le 1 février 1980)

Abstract

Tl₂Mo₉S₁₁ crystallizes in space group $R\bar{3}$, with a = 12.955 (2) Å, a = 42.09 (1)°, $Z_R = 2$ [hexagonal axes: a = 9.304 (3), c = 35.366 (7) Å], $d_m = 5.27$, $d_x = 5.34$ Mg m⁻³. The structure has been determined by direct methods and refined by least squares to R = 0.032, $R_w = 0.033$ for 1410 independent reflections. The structure consists of a stacking of Mo₆S₈-Tl-Tl-Mo₁₂S₁₄ files which run along the ternary axis; these lead to normal octahedral Mo₆ clusters and new trioctahedral Mo₁₂ clusters which can be described as a linear condensation of three Mo₆ clusters.

Introduction

Dans des publications précédentes, nous avons montré que les chalcogénures dérivant du Mo^{II} se caractérisent par la présence, dans leur structure, de clusters octaédriques Mo₆. Récemment, nous avons préparé une nouvelle phase dérivant du Mo^{II} possédant des clusters Mo₆ et Mo₉ dans des motifs Mo₆Se₈ et Mo₉Se₁₁ (Chevrel, Sergent, Seeber, Fischer, Grüttner & Yvon, 1979; Grüttner, Yvon, Chevrel, Potel, Sergent & Seeber, 1979; Seeber, Decroux, Fischer, Chevrel, Sergent & Grüttner, 1979). Nous décrivons ici la structure d'une nouvelle phase à cluster plus condensé, $Tl_2Mo_9S_{11}$, qui possède à la fois des clusters Mo₆ et Mo₁₂ dans des motifs Mo₆S₈ et Mo₁₂S₁₄ respectivement.

Partie expérimentale

Le composé $Tl_2Mo_9S_{11}$ est obtenu par synthèse directe à partir des éléments (Chevrel, Potel, Sergent, Decroux & Fischer, 1980). Les mélanges 2Tl + 9Mo + 11S sont effectués en boîte à argon désoxygéné et, dans un premier temps, portés à 1123 K, dans un tube de silice scellé sous vide. Un recuit vers 1373 K est nécessaire pour obtenir un produit pur. Des monocristaux noirs, stables à l'air, généralement de forme rhomboédrique allongée, sont obtenus par chauffage prolongé à 1423 K.

L'étude radiocristallographique préliminaire a été menée sur chambre photographique de Weissenberg et de précession. Les paramètres de la maille cristalline

Tableau1. Conditionsdel'enregistrementetdel'affinement

Dimensions du cristal utilisé	$0,07 \times 0,1 \times 0,1 \text{ mm}$
Coefficient linéaire d'absorption	$\mu = 18,33 \text{ mm}^{-1} (\bar{\mu}R \simeq 1)$
Radiation utilisée	Mo $K\overline{a}$ ($\lambda = 0,71069$ Å)
Monochromateur	Lame de graphite
Distance cristal-détecteur	173 mm
Limite d'enregistrement	$\theta \leq 30^{\circ}$
Balayage	$\omega - 2\theta$
Amplitude de balayage	$(1 + 0.35 \text{ tg } \theta)^{\circ}$
Ouverture	$(2 + 0.35 \text{ tg } \theta) \text{mm}$
Nombre de réflexions non nulles enregistrées	3078
Nombre de réflexions indépendantes	1410
Valeur finale du R	0,032
Valeur finale du R_{w}	0,033

© 1980 International Union of Crystallography

Tableau	2.	Paramètres atomiques de $Tl_2Mo_9S_{11}$ (×10 ⁵		
sauf B_{40}) (maille rhomboédrique)				

	Position	x	У	z	$B_{eq}(\dot{A}^2)$
Mo(1)	6(f)	30825 (8)	64149 (8)	45253 (8)	0,37
Mo(2)	6(f)	25274 (8)	92375 (8)	10938 (8)	0,36
Mo(3)	6(f)	86942 (8)	20254 (8)	2012 (8)	0,35
S(1)	6(f)	23936 (26)	84608 (24)	49411 (25)	0,55
S(2)	6(f)	6068 (24)	79904 (26)	40728 (24)	0,69
S(3)	6(1)	5145 (25)	33019 (26)	71537 (24)	0,67
S(x 1)	2(c)	14741 (9)	. ,		0,69
S(x2)	2(c)	41502 (9)			0,85
TI(1)	2(c)	33152 (2)			2,54
Tl(2)	2(c)	23050 (2)			1,40
		* $B_{eq} = \frac{1}{2}$	$\frac{4}{3}\sum_{i'j}\beta_{ij}\mathbf{a}_i\mathbf{a}_j.$		

ont été affinés par moindres carrés à partir des angles de Bragg de 25 réflexions, optimisés sur diffractomètre automatique. L'enregistrement des intensités diffractées par un monocristal a été effectué sur diffractomètre automatique Nonius CAD-4. Les conditions d'enregistrement sont rassemblées dans le Tableau 1. Les intensités mesurées, exploitées par le programme MAXE (Le Marouille, 1972), sont corrigées du facteur de Lorentz-polarisation. Du fait de la faible valeur de \overline{uR} , nous avons négligé les effets de l'absorption.

La structure a été résolue par méthode directe à l'aide du programme MULTAN (Germain, Main & Woolfson, 1971). La solution présentant la meilleure figure de mérite nous a permis de placer trois Mo et deux S en position 6(f), et deux Tl en position 2(c). Une carte de densité électronique différence tridimensionnelle fait alors apparaître les atomes manquants: un S en position 6(f) et deux S en position 2(c). L'affinement par moindres carrés et matrice totale (Prewitt, 1966) des coordonnées de position, ainsi que des facteurs de température isotrope, puis anisotrope, converge vers les valeurs R = 0.032 et $R_w = 0.033$, avec: $\vec{R} = \sum |\Delta F| / \sum |F_o|$ et $R_w = (\sum w \Delta^2 F / \sum w F_o^2)^{1/2}$. Le facteur de pondération w est calculé à partir de la statistique de comptage (McCandlish, Stout & Andrews, 1975), et les facteurs de diffusion atomique à partir de la formulation de Vand, Eiland & Pepinsky (1957), tabulée par Moore (1963), et sont corrigés de la dispersion anomale (International Tables for X-ray Crystallography, 1974). Les coordonnées atomiques et les facteurs d'agitation thermiques isotropes équivalents sont rassemblés dans le Tableau 2.*

Description de la structure

La formule structurale $Tl_4(Mo_6S_8)(Mo_{12}S_{14})$ fait apparaître la présence de motifs Mo_6S_8 et $Mo_{12}S_{14}$

Fig. 1. Projections (a) de $Tl_2Mo_9S_{11}$ et (b) de $In_{3}Mo_{13}Se_{19}$ sur le plan hexagonal (1120).

constitués autour de deux types de clusters métalliques Mo_6 et Mo_{12} . Ces motifs s'empilent suivant l'axe ternaire, selon la séquence: ... Mo_6S_8 -Tl(1)-Tl(2)- $Mo_{12}S_{14}$ -Tl(2)-Tl(1)- Mo_6S_8 ..., comme le montre la Fig. 1(*a*).

Motif Mo₆S₈

Le motif Mo_6S_8 est un cluster octaédrique Mo_6 inscrit dans un cube de soufres S_8 (Fig. 2a). Il est tout à fait semblable à celui rencontré dans toutes les phases du type MMo_6X_8 (Guillevic, 1974). La symétrie ponctuelle est $\overline{3}$, et de ce fait il est intéressant de décrire le cluster Mo_6 par deux triangles Mo_3 situés dans deux plans perpendiculaires à l'axe ternaire et empilés suivant cet axe en position décalée l'un par rapport à l'autre. Il existe donc deux types de distances métalliques, suivant que les molybdènes considérés appartiennent au même plan [distance notée $(Mo-Mo)_{\Delta}$] ou à deux plans distincts (distance notée $Mo_{\Delta}-Mo_{\Delta}$). Un autre paramètre intéressant est la distance interplan (notée $\Delta - \Delta$) (voir Tableau 3).

Motif Mo₁₂S₁₄

Le motif $Mo_{12}S_{14}$ (Fig. 2b), également de symétrie ponctuelle $\bar{3}$, est une nouvelle entité structurale. Il est constitué d'un cluster métallique Mo_{12} résultant de l'empilement, en position décalée, de quatre triangles Mo_3 situés dans quatre plans perpendiculaires à l'axe ternaire, ce qui lui donne une forme de trioctaèdre. Cela

^{*} Les listes des facteurs de structure et des facteurs d'agitation thermique anisotrope ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 35140: 10 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

fait apparaître l'existence de deux types de Mo: six Mo(2) forment les deux triangles extrêmes, et six Mo(3) les deux triangles internes.

Chaque Mo(2) est situé au centre d'une face carrée de soufre et est lié en plus à un soufre externe appartenant au motif Mo₆S₈ voisin. Ainsi, le comportement de Mo(2) est identique à celui de Mo(1) du cluster Mo₆.

Par contre, chaque Mo(3) est lié à six Mo: deux Mo(3) dans le même plan perpendiculaire à l'axe 3, deux Mo(3) et deux Mo(2) situés dans les deux plans voisins. Il est également lié à quatre soufres: deux S(3) dans le même plan, un S(2) et un S(3) de part et d'autre de ce plan. La coordinence totale de Mo(3) est donc de dix (6Mo + 4S), alors que celle des Mo(1) et Mo(2) est de neuf (4Mo + 5S).

Les distances caractéristiques, ainsi que leurs écarts types des deux motifs Mo₆S₈ et Mo₁₂S₁₄ sont rassemblés dans le Tableau 3.

Environnement des thalliums

Les atomes de thallium sont répartis dans deux sites cristallographiques distincts situés sur l'axe ternaire [position 2(c)]. La géométrie de leur environnement est

Tableau 3. Distances interatomiques (Å) dans Tl,MooS,

Distances dans Mo	Distances dans MO_6S_8				
$\begin{bmatrix} Mo(1) - Mo(1) \end{bmatrix}_{\Delta} \\ Mo(1)_{\Delta} - Mo(1)_{\Delta} \\ \Delta(1) - \Delta(1) \\ Mo(1) - S(1) \end{bmatrix}$	$2 \times 2,693 (1) 2 \times 2,780 (5) 2,30 2.445 (1)$	S(1)-S(1) 2 S(1)-S(2)	× 3,999 (10) 3,526 (4) 3,738 (7) 3,789 (3)		
$M_{0}(1) = S(x^{2})$	2,451 (4) 2,491 (1) 2,410 (5)	S(1)-S(x 2) = 3 S(2)-S(x 2) = 3	× 3,509 (7) × 3,447 (3)		
Mo(1)=S(2/2) Mo(1)=S(2)	2,469 (3)				
Distances dans Mo	0 ₁₂ S ₁₄				
$[Mo(2)-Mo(2)]_{\Delta}$ $[Mo(3)-Mo(3)]_{\Lambda}$	2 × 2,658 (1) 2,688 (1)	S(1)–S(2)	3,564 (4) 3,789 (4)		
$Mo(2)_{\Delta} - Mo(3)_{\Delta}$	2,743 (1) 2,771 (1)	S(1)-S(3) S(1)-S(x 1) = 3	3,861 (7) × 3,478 (3)		
$Mo(3)_{\Delta} - Mo(3)_{\Delta}$ $\Delta(2) - \Delta(3)$	2,669 (5) 2,28	S(2)-S(3)	3,432 (4) 3,539 (4)		
$\Delta(3) - \Delta(3)$ Mo(2) - S(2)	2,17 2,461 (1)	S(2)-S(x1) = 3 S(3)-S(3) = 2	× 3,511 (7) × 3,666 (1)		
Mo(2)-S(3)	2,481 (1) 2,593 (4)	Distance inter-clu	ıster		
Mo(2)-S(x 1) Mo(2)-S(1) Mo(3)-S(3)	2,399 (5) 2,504 (3) 2,483 (1)	Mo(1)Mo(2)	3,217 (1)		
Mo(3)–S(2) Mo(3)–S(3)	2,486 (1) 2,431 (4) 2,587 (4)				
Environnement des Tl					
T1(1)-S(3) × 3 -S(3) × 3 -S(x2)	3,329 (4) 3,527 (3) 2,953 (4)	$Tl(2)-S(1) \times 3$ -S(2) × 3 -S(x1)	3,312 (4) 3,099 (2) 2,939 (4)		
	Tl(1)Tl(2)	3,572 (2)			

Fig. 2. (a) Motif Mo_6S_8 et (b) motif $Mo_{12}S_{14}$ avec leur six soufres intermotif.

Fig. 3. Environnement des thalliums dans Tl₂Mo₉S₁₁.

identique et est constituée de sept soufres dont six disposés selon deux triangles en position décalée, dans deux plans perpendiculaires à l'axe 3, forment un octaèdre très écrasé. Le septième soufre, situé sur l'axe ternaire, ponte une de ses faces triangulaires à une distance TI-S très courte [2,953 et 2,939 Å respectivement pour Tl(1) et Tl(2)]. L'association par deux de ces environnements fait apparaître la formation de cages délimitées par quatre motifs Mo₆S₈ et quatre motifs $Mo_{12}S_{14}$ dans lesquelles sont piégés deux Tl [un Tl(1) et un Tl(2)] (Fig. 3). Les distances Tl(1)–Tl(2) (3,572 Å) sont du même ordre de grandeur que les plus courtes distances observées dans Tl₂CO₃ (3,588 Å) (Marchand, Piffard & Tournoux, 1975). Cette distance Tl-Tl et les distances Tl-S prouvent, sans ambiguïté, que les deux thalliums sont au degré d'oxydation +1. Le fait que certaines distances TI-S soient inférieures à la somme des rayons ioniques indique que le doublet libre des Tl⁺ présente une activité stéréochimique. Ceci explique pourquoi le composé isotype K₂Mo₉S₁₁ (Potel,

Chevrel, Sergent, Decroux & Fischer, 1979) possède un volume de maille supérieure (892,3 contre 883,8 Å³), ainsi qu'un paramètre c hexagonal plus grand (35,97 contre 35,36 Å), bien que le rayon ionique de Tl⁺ soit supérieur à celui de K⁺ (1,50 pour 1,38 Å en environnement 6) (Shannon, 1976).

Discussion

La structure de $Tl_2Mo_9S_{11}$ est constitué de motifs isolés Mo_6S_8 , $Mo_{12}S_{14}$, alors que celle des composés MMo_6X_8 est faite uniquement de cubes Mo_6X_8 isolés. Dans ces dernieres phases, les six molybdènes d'un cluster Mo_6 sont liés à six molybdènes de six clusters Mo_6 . Dans $Tl_2Mo_9S_{11}$, les six molybdènes d'un cluster Mo_6 sont liés à six molybdènes externes de six clusters Mo_{12} , et inversement, les six molybdènes de six motifs Mo_6S_8 . La liaison intercluster Mo_-Mo est égale à 3,217 Å, valeur voisine de celles observées dans les phases MMo_6X_8 .

Le nouveau motif $M_{0_{12}}S_{14}$ observé ici résulte de la condensation de trois octaèdres M_{0_6} . Les deux octaèdres externes présentent une distance interplan de 2,28 Å du même ordre que celle du cluster $M_{0_6}S_8$ (2,30 Å), par contre elle n'est plus que de 2,17 Å au coeur du motif, mettant ainsi en évidence une condensation maximale au centre de ce cluster.

Le composé $In_{2}Mo_{15}Se_{19}$ présente aussi deux types de motifs: Mo_6Se_8 , Mo_9Se_{11} . En effet, sa formule structurale s'écrit: $In_{1}(1)In_2(2)Mo_6Se_8Mo_9Se_{11}$. L'empilement tridimensionnel des motifs laisse des sites lacunaires de sélénium sous forme de 'cages'. Les deux atomes d'indium(I) sont piégés dans ces cages (Fig. 1b), comme le sont les deux thalliums de $Tl_2Mo_9S_{11}$ (Fig. 1a). L'empilement différent des motifs laisse apparaître:

- dans $Tl_2Mo_9S_{11}$, des tunnels se développant parallèlement aux axes rhomboédriques, comme dans les phases MMo_6X_8 ,

- dans $In_{3}Mo_{15}Se_{19}$, des tunnels en zigzag suivant la direction *c* hexagonale.

Le motif Mo_9Se_{11} de $In_{\sim 3}Mo_{15}Se_{19}$ a été décrit comme résultant de la condensation de deux motifs Mo_6Se_8 . Le cluster Mo_9 peut être vu comme la condensation de deux octaèdres suivant une face ou plus simplement comme l'empilement de trois triangles Mo_3 alternés. La filiation entre les motifs Mo_6X_8 , Mo_9X_{11} , $Mo_{12}X_{14}$ (X = chalcogène) se traduit par l'adjonction de plans (Mo_3X_3); cette évolution augmente à chaque fois le caractère anisotrope du nouveau motif. Une condensation monodimensionnelle infinie de clusters Mo_6 dans des motifs ($Mo_{6/2}X_{6/2})^1_{\infty}$ a été obtenue dans de nouveaux composés de formule $M_2Mo_6X_6$, de symétrie hexagonale (Potel, Chevrel, Sergent, Decroux & Fischer, 1979).

Références

- CHEVREL, R., POTEL, M., SERGENT, M., DECROUX, M. & FISCHER, Ø. (1980). J. Solid State Chem. A paraître.
- CHEVREL, R., SERGENT, M., SEEBER, B., FISCHER, Ø., GRÜTTNER, A. & YVON, K. (1979). *Mater. Res. Bull.* 14, 567–577.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.
- GRÜTTNER, A., YVON, K., CHEVREL, R., POTEL, M., SERGENT, M. & SEEBER, B. (1979). Acta Cryst. B35, 285-292.
- GUILLEVIC, J. (1974). Thèse d'Etat, Rennes.
- International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press.
- LE MAROUILLE, J. Y. (1972). Thèse 3ème cycle, Rennes.
- MCCANDLISH, L. E., STOUT, G. H. & ANDREWS, L. C. (1975). Acta Cryst. A31, 241-245.
- MARCHAND, R., PIFFARD, Y. & TOURNOUX, M. (1975). Can. J. Chem. 53, 2454–2458.
- MOORE, F. H. (1963). Acta Cryst. 16, 1169-1175.
- POTEL, M., CHEVREL, R., SERGENT, M., DECROUX, M. & FISCHER, Ø. (1979). C. R. Acad. Sci. Sér. C, 288, 429-432.
- PREWITT, C. T. (1966). SFLS-5. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
- SEEBER, B., DECROUX, M., FISCHER, Ø., CHEVREL, R., SERGENT, M. & GRÜTTNER, A. (1979). Solid State Commun. 29, 419-423.
- SHANNON, R. D. (1976). Acta Cryst. A 32, 751-756.
- VAND, V., EILAND, P. F. & PEPINSKY, R. (1957). Acta Cryst. 10, 303-311.